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A variational method is developed to describe the dynamics of a Bose-Einstein condensate �BEC� trapped in
an applied external potential consisting of both a harmonic and periodic component. Using this variational
method, the BEC dynamics is shown to be well approximated by four coupled nonlinear differential equations,
which describe the fundamental interactions in the system arising from the interplay of amplitude �width�,
chirp, center position, and center frequency. The simplified analytic theory allows for an efficient and conve-
nient method for characterizing the experimental BEC behavior when localized condensates are generated. It
further gives the critical strength ratio of harmonic to periodic potential necessary to support multiple stable
lattice sites for the condensate and demonstrates that there can be an underlying chaotic behavior in the
condensate system.
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I. INTRODUCTION

In recent years a large number of research groups across
the world have generated Bose-Einstein condensates �BECs�
by bringing various dilute gases to extremely low tempera-
tures via laser and evaporative cooling methods �see Ref. �1�
and references therein�. Much of the resulting BEC research
has been aimed at exploiting, manipulating, and characteriz-
ing macroscopic quantum phenomena �1,2�. Indeed, BECs
have been used to study such diverse phenomena as phase
coherence �3–5�, matter-wave diffraction �6�, quantum logic
�7,8�, matter-wave transport �9�, matter-wave gratings, and
pulsed matter-wave lasers �10�. In this paper, we consider the
dynamical evolution of the BEC and how to manipulate and
control it subject to the influence of both harmonic and pe-
riodic trapping potentials �3,4�. Specifically, we apply a
variational method �11,12� to the governing nonlinear partial
differential equation, which reduces the BEC dynamics to a
much simpler set of four coupled nonlinear differential equa-
tions, which capture the amplitude, chirp, center position,
and center-frequency fluctuations observed in simulations
and experiment.

The international proliferation of BEC experiments dem-
onstrates the continued fundamental interest in the applica-
tions associated with macroscopic quantum phenomena. In
general, repulsive condensates have been shown to be ex-
perimentally stable and have lifetimes on the order of sec-
onds to minutes �3�. In contrast, attractive condensates have
proven to be more difficult to control and have been shown
to collapse in three dimensions �13�. However, the attractive
condensates in the quasi-one-dimensional �14� setting are
predicted to be stable and robust �14,15�. A Feshbach reso-
nance can be used to efficiently tune the BEC between at-
tractive and repulsive condensates �16�. Indeed, the technol-
ogy for generating attractive or repulsive BECs is becoming,
relatively speaking, commonplace. As such, the ability to
control and manipulate the condensate has now become a
central issue in the study of BEC matter waves. With regards
to periodic potentials, the trapping of the condensate in nu-
merous lattice sites �or troughs of the potential� is of funda-
mental interest. Our analysis characterizes the dynamic tran-
sition from trough to trough and further predicts when
multiple lattice sites are stable. The analysis also suggests

how to selectively move the condensate from one lattice site
to another by simply manipulating the relative strength of the
periodic potential.

The paper is outlined as follows: In Sec. II, the governing
mean-field equations are presented. Section III develops the
variational method and derives the reduced set of four
coupled nonlinear differential equations, which govern the
system. Sections III A–III C provide extensive theoretical
predictions for various cases of the applied potential. The
concluding subsection provides the general theory when the
BEC is subject to both harmonic and periodic potentials.
Section IV builds on the theory of the preceding section to
propose methods for controlling and manipulating the con-
densate. A comparison is also provided with experiment in
Sec. V before concluding the paper in Sec. VI with a review
of the key results.

II. GOVERNING EQUATIONS

It has been well established that in cigar-shaped BEC trap
geometries the macroscopic description of the BEC wave
function can be theoretically described by the nonlinear
Schrödinger equation with external potential V�x� �14�
�Gross-Pitaevskii equation �17,18��,

i�t +
1

2
�xx + ����2� − V�x�� = 0. �1�

The evolution of the normalized complex-valued mean-field
variable ��x , t� is derived under the Hartree-Fock approxi-
mation �19� in the dilute gas limit �20�. And although much
of the work here focuses on attractive BECs ��=1�, the
variational method presented can be used to describe repul-
sive condensates ��=−1� as well �see. Sec. V�. Note that for
physical potentials, the function V�x� is real.

The specific potential considered here is comprised of
both a harmonic and periodic potential �3,4�. Thus the poten-
tial V�x� in Eq. �1� is given by

V�x� = V0 sin2���x − x̄�� + V1x2, �2�

where V0 and V1 measure the relative strengths of the peri-
odic and harmonic potentials, respectively. The parameter x̄
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measures the offset of a minimum of the periodic potential
with respect to the minimum of the harmonic potential. Note
that if x̄= ±n� /�, where n is an integer, then a minimum of
the periodic potential aligns with the minimum of the har-
monic potential.

In the case that V�x�=0, the governing equation �1� re-
duces to the nonlinear Schrödinger equation for which soli-
ton solutions are known to exist �21�. The one-soliton solu-
tion is of fundamental interest in BEC theory, water waves
�22�, plasmas �23�, and nonlinear optics �24,25�. Specifically,
the stability and dynamics of the one-soliton solution plays a
critical role in determining the behavior in such systems.
Thus perturbations to the one-soliton solution provide sig-
nificant insight into the dynamics of a given physical system.
Two standard methods have been developed to characterize
the behavior of the one-soliton under perturbation: soliton
perturbation theory �26� and the variational method �27�. Un-
fortunately, standard soliton pertubation theory is incapable
of reproducing the dynamics observed in the numerical
simulations considered here since it fails to capture the qua-
dratic phase changes, which drive the amplitude-width fluc-
tuations. However, the variational method generally provides
a quantitative characterization of the dynamics.

III. VARIATIONAL DYNAMICS

Although full simulations are essential to understanding
Eq. �1�, they often do not give the desired intuition and in-
sight into the fundamental dynamics driving the governing
system. Here we extend the variational method, which has
been used extensively for Hamiltonian systems. Beginning
with the work of Anderson �28�, the literature regarding
variational reductions in nonlinear Schrödinger-type systems
is vast, especially given its applicability in optical transmis-
sion systems. Here, we refer the reader to a review article
�29� that highlights its many applications and references.

For the system governed by Eq. �1� with Eq. �2� the La-
grangian density �27� is given by

L = i��
��*

�t
− �*��

�t
� + � ��

�x
�2

− ����4 + 2V�x����2, �3�

where �L /��*=0 reproduces the governing equation �1�. To
simplify the following calculations, we assume a Gaussian
ansatz. The specific choice of ansatz makes only a small
quantitative difference �30� since the integrals to be evalu-
ated below will change only slightly. The ansatz assumption
is then

� = A	� exp„− �2�x − x0�2 + i���x − x0�2 + ��x − x0� + 	�… ,

�4�

where the parameters �, �, x0, �, and 	 vary with time t and
measure the amplitude, quadratic phase �chirp�, center posi-
tion, center frequency, and absolute phase, respectively. The
scaling constant A determines the total number of condensed
atoms in the trap since 
−



 ���2dx=A2	� /2.
The ansatz �4� gives a localized BEC solution. Of practi-

cal physical interest is the width of the localized solution in
relation to the period of the applied sinusoidal potential in

Eq. �2�. The case considered here, and for which the varia-
tional method provides a good approximation, assumes that
the frequency of the periodic potential � in Eq. �2� is small
in relation to the amplitude-width parameter � in Eq. �4�, i.e.,
� /��1. Figure 1 demonstrates the possible parameter re-
gimes that can be considered. The top panel �� /�=0.2� is of
interest here since the localized solution can be trapped
at the troughs of the periodic potential. The middle panel
�� /�=4� and bottom panel �� /�=20� consider the cases
when the width of the condensate spans 2–3 troughs or
10–15 troughs, respectively. Numerical simulations of these
regimes show that the condensate structure no longer retains
the localized solution form �4�. Rather, oscillations develop
on the envelope of the condensate.

The average Lagrangian �27,29� L=
−


 Ldx can now be

calculated using the ansatz �4� with �3�. Applying the Euler-
Lagrange formulas �L /�p=0, where p is one of the param-
eters �, �, x0 and � gives the reduced dynamical system

d�

dt
= − 2�� , �5a�

d�

dt
= 2��4 − �2� −

A2	2

2
�3 − V0�2 cos�2��x̄ − x0�� − V1,

�5b�

dx0

dt
= � , �5c�

d�

dt
= − 2V1x0 + V0� sin�2��x̄ − x0�� , �5d�

where we take �=1 in Eq. �3� and the right-hand side of Eqs.
�5b� and �5d� have been simplified by assuming that � /��1
so that exp�−�2 / �2�2���1. This assumption holds in the
case that the localized solution is more narrow than the pe-
riod of the potential, i.e., the case of interest here �see the top
panel of Fig. 1�. This simplification allows us to extend re-
cent results �11,12� since stability can be computed explic-
itly. This 4�4 nonlinear system of differential equations
governs the interaction between the amplitude, chirp, center
position, and center frequency. It should be noted that the
inclusion of the chirp is critical since it is the only dynamical
quantity that couples with the amplitude as seen in Eq. �5a�,
thus allowing for amplitude fluctuations. This should be con-
trasted with soliton perturbation theory, which does not allow
for chirp dynamics and therefore disallows amplitude fluc-
tuations for any real potentials V�x�. Further, note that the
absolute phase variable 	�t� plays no role in the dynamics
�5� due to the phase invariance of Eq. �1�. Regardless, 	�t�
can be computed from the equation derived from �L /�	=0.

The standard treatment of coupled, nonautonomous non-
linear differential equations involves locating their fixed
points and determining their linear stability properties �31�.
This often allows the behavior of the global dynamics to be
understood based upon the behavior �flow� near the fixed
points �28�. Fixed points for Eq. �5� are found where �=�
=0 and the following 2�2 system is satisfied for � and x0:
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2�4 −
A2�3

	2
− V0�2 cos�2��x̄ − x0�� − V1 = 0, �6a�

2V1x0 − V0� sin�2��x̄ − x0�� = 0. �6b�

The solutions to these equations are denoted �0 and X0. The
linear stability of the fixed points �� ,� ,x0 ,��= ��0 ,0 ,X0 ,0�
is established by considering the evolution of the perturbed

quantities denoted by tildes �31�: �=�0+ �̃, �=0+ �̃, x0

=X0+ x̃, and �=0+ �̃. Inserting these into Eq. �5� results in
the linearized evolution system

du

dt
= Mu → Mv = v , �7�

where the vector u= ��̃ , �̃ ,x0̃ , �̃�T, the matrix M is deter-
mined from the linearization process �31�, and u=v exp�t�.
Thus it only remains to compute the eigenvalues of the ma-
trix M and stability can be determined. If any eigenvalue has
a real part greater than zero, the solution is considered un-
stable. Of course, for the general 4�4 system �5�, a simple
phase-plane portrait is not possible as it is in the 2�2 case.
Rather, a complicated four-dimensional flow is generated,
which has the possibility of producing chaotic behavior �31�.

For the specific dynamical system considered here, the
linearization about the steady-state solution gives the matrix
M,

M = �
0 1 0 0

− 2V1 − 2�2V0 cos � 0 0 0

0 0 0 − 2�0

− 2�3V0 sin � 0 8�0
3 −

3	2

2
A2�0

2 0  ,

�8�

where �=2��x̄−X0�. The eigenvalues of this matrix can be
calculated analytically. The four roots  j �j=1,2 ,3 ,4� are
calculated from two quadratic equations,

1,2 = ± i	16�0
4 − 3	2A2�0

3, �9a�

3,4 = ± i	2V1 + 2�2V0 cos � . �9b�

If the quantities under the radicals of the square root are
positive, then the corresponding fixed point is orbitally stable
�31�. For the Hamiltonian system considered here, this is the
best one can expect from the linear stability. However, if
either of the quantities in the square root is negative, then a
saddle structure is expected and the fixed point is unstable.

With no applied potential �V1=V0=0�, the evolution of
the center position and center frequency is trivial. By Noet-
her’s theorem �33�, the translational and Galilaen invariance
of the system �32� require two of the four eigenvalues �9� to
be zero, i.e., 3,4=0. In contrast, the chirp and amplitude
interact to generate nontrivial dynamics similar to those con-
sidered in dispersion-managed optical systems �30�. The
chirp-amplitude interaction can be characterized by consid-
ering the fixed points of the system, which occur for �=0

and when Eq. �6a� reduces to �3��−A2	2/4�=0. Thus there
are two fixed points: �0=0 and �0=A2	2/4. The primary
interest is in real and positive �0 due to the physical consid-
eration of the form of ansatz chosen in Eq. �4�. Linearizing
about �0 we find the two remaining eigenvalues of Eq. �9� to
be 1,2= ± iA4 /4. Purely oscillatory behavior occurs since the
eigenvalues have no real part. The fixed point at �=0 is a
degenerate point for which a standard linear stability analysis
yields no information �30�. Thus the center-point is sur-
rounded by a separatrix, which emanates and terminates at
the origin, showing that for initial chirp-amplitude values,
which lie within the separatrix, periodic breathing dynamics
will ensue.

A. No periodic potential: V0=0

In the absence of a periodic potential, the harmonic po-
tential determines the dynamics. In this case, Eq. �5� shows
that the amplitude-chirp dynamics separate from the center-
position and center-frequency dynamics resulting in two
2�2 systems. It should be noted that the assumption
� /��1 in Eq. �5� is irrelevant to the dynamics presented in
this section. The center-position and center-frequency equa-
tions �5c� and �5d� are linear and can be solved exactly giv-
ing only oscillatory behavior for the center-position and
center-frequency �3,4= ± i	2V1�.

The amplitude-chirp dynamics follow closely from the
previous subsection with the notable exception that the pa-
rameter V1 is now included. Fixed points are found for �
=0 and when Eq. �6a� reduces to

2�4 −
A2

	2
�3 − V1 = 0. �10�

The only solutions of interest are those roots of Eq. �10� that
are real and positive. This restriction comes from the physi-
cal consideration of the form of ansatz chosen in Eq. �4�. For
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FIG. 1. Localized condensate �bold line� and applied periodic
potential �light line� for � /�=0.2,4, and 20 �top, middle, and bot-
tom panels, respectively�. Here we choose �=0.2 in Eq. �2� and the
parameter A in Eq. �4� so that the amplitude of the condensate is
1.5. The value of � is given on the left of each panel. The case of
physical interest is represented in the top panel.
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a root �0, which is real and positive, we find that by using
Eq. �6a� the eigenvalues of Eq. �9� are

1,2 = ± i	8V1 + �0
3A2	2, �11�

where we recall that V1�0 for the confining potential con-
sidered here. Thus again the behavior of the amplitude-chirp
interaction is oscillatory.

B. No harmonic potential: V1=0

The periodic potential gives rise to a more complex phase
plane and interaction dynamics. In this case, all four param-
eters in Eq. �5� remain coupled with the amplitude-chirp dy-
namics slaved to the center-position and center-frequency
dynamics. Further, the quality of the variational approxima-
tion relies now on � /��1. Indeed, large fluctuations in �
can compromise the agreement with Eq. �1�. Fixed points are
found for �=�=0. The nonlinear algebraic equations �6a�
and �6b�, which must also be satisfied, reduce to

2�4 −
A2

	2
�3 − V0�2 cos � = 0 and sin � = 0. �12�

In order for the second equation to be satisfied, we require �
to be a multiple of � so that X0= x̄− �n�� / �2��, where n
=0, ±1, ±2. . . . This then reduces Eq. �12� to

2�4 −
A2

	2
�3 − �− 1�nV0�2 = 0. �13�

Note that for n=0, ±2, ±4. . ., i.e., when we are at a trough of
the periodic potential, V0�2�0 takes on the same role as V1
in the harmonic potential in the previous subsection. And for
n= ±1, ±3. . . there is a sign change. This sign change is criti-
cal in determining the stability of the fixed points. Equation
�13� produces four roots, only two of which are real. And of
these two, only positive ones are of physical interest. Spe-
cifically, the triple root at the origin bifurcates into two com-
plex roots and one nonzero, real root. Thus depending on the
specific parameter regime chosen, we can either have one or
two roots for which �0�0.

The stability of the fixed points can be determined from
Eq. �9�. Specifically, rewriting Eq. �9a� using Eq. �6a� and
the fact that V1=0 gives

1,2 = ± i		2A2�0
3 + �2V0 cos � , �14a�

3,4 = ± i	2�2V0 cos � . �14b�

These expressions lead to very simple conclusions: if we are
in a trough of the periodic potential so that n=0, ±2, ±4. . .,
then cos �=1 and both 1,2 and 3,4 are purely imaginary
since the quantities under the square roots are strictly posi-
tive. Recall that we are assuming V0�0 and V1�0. In con-
trast, if we are on the peak of a potential so that n
= ±1, ±3. . ., then cos �=−1 and Eq. �14b� leads to saddle
behavior since the eigenvalues 3,4 are now real with one
being positive and one being negative. The remaining pair of
eigenvalues is purely imaginary since they reduce to 1,2

= ± i	4�0
4+�2V0, where the quantity in the square root is

always strictly positive.

C. Harmonic and periodic potentials

We now consider the full dynamics, which include both
the harmonic and periodic potentials. To begin, we consider
Eq. �16b�, which determines the x position of the fixed points
X0. This gives the relation

2V1

�V0
X0 = sin � . �15�

As V0 is increased relative to V1, pairs of fixed points are
created. A graphical representation of the birth of the fixed-
point pairs as a function of increasing V0 is shown in Fig. 2.

Once the fixed points are calculated numerically from the
transcendental equation �15�, they can be used in Eq. �6a� to
solve for �0. Stability can then be established by solving for
the eigenvalues �9�. We rewrite the expressions for the eigen-
values using Eq. �6� as

1,2 = ± i	A2	2�0
3 + V1�1 +

�2V0

V1
cos �� , �16a�

3,4 = ± i	2V1�1 +
�2V0

V1
cos �� . �16b�

This illustrates the importance of the ratio �2V0 /V1. In par-
ticular, for �2V0 /V1�1, the eigenvalues are always purely
imaginary since the quantities under the square root are
strictly positive. However, once �2V0 /V1�1, the values of
3 and 4 can alternate between purely imaginary �stable
center� and purely real �unstable saddle� as cos � oscillates
between positive and negative values as a function of X0.
Figure 2 illustrates the creation of fixed points as a function
of the parameter �2V0 /V1. Indeed, the following two impor-
tant graphical observations can be made concerning the cre-
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FIG. 2. Graphical representation of the birth of fixed points as a
function of the parameter V0 /V1 for �=0.1 and x̄=0. The light lines
are the left side of Eq. �15� and the bold lines are the right side of
Eq. �15�. Note that as V0 /V1 is increased, pairs of fixed points
�saddle-center pairs� are created symmetrically about the origin.
The stable centers are indicated with circles, whereas the unstable
saddles are denoted by squares.
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ated fixed points to the right of the origin: one of the fixed
points resides in quadrant III, where �� �� ,3� /2�, which
gives purely real eigenvalues �unstable saddle� for Eq. �16b�
since cos ��0. In contrast, the second created fixed point
resides in quadrant IV, where �� �3� /2 ,2��, so that cos �
�0 and the eigenvalues �16� are purely imaginary �stable
center�. Thus the fixed points are created in saddle-center
pairs as a function of increasing �2V0 /V1. Similar observa-
tions can be made for the fixed points to the left of the origin.
In this case, however, the fixed points are in quadrants II and
I, respectively, so that the sign argument presented above is
preserved.

For the sake of simplifying the above argument, we as-
sume that a minimum of the periodic potential is aligned
with the minimum of the harmonic potential so that x̄=0.
Then X0=0 is a solution. Indeed, this is the only solution for
V0�V1. Essentially, the harmonic potential dominates the
BEC dynamics in this parameter regime. However, as V0 is
increased relative to V1, pairs of fixed points are created
symmetrically on either side of x=0 �see Fig. 2�, and in the
limit V1 /V0→0, there are an infinite number of fixed points
as given in Sec. III B.

As a consequence of the interaction between the harmonic
and periodic potentials, only a finite number of fixed points
are possible for a given strength of the two potentials. The
exact number is determined by the quantity �2V0 /V1. A large
number of stable lattice sites requires the periodic potential
to be much larger than the harmonic potential �V0�V1�. Al-
ternatively, only the minimum of the harmonic well is stable
for �2V0 /V1�1. Figures 3–6 exemplify the typical dynam-
ics, which can result in the system when three stable fixed
points are present. In this series of four figures, we choose
V0 /V1=1000 with �=0.1, which corresponds to the middle
panel of Fig. 2. Thus the three stable �center� fixed points are
located at x0=0 and x0� ±28. Figure 3 demonstrates the
dynamics of Eq. �5� near the fixed point at the origin. Note
that the amplitude and chirp exhibit a beating-type phenom-
enon, which results from the interaction of the two frequen-
cies �16� in the system: the frequency of center-position
fluctuations and the frequency of the amplitude-chirp oscil-
lations. Likewise, Fig. 4 demonstrates the dynamics of the
condensate trapped in the neighboring stable �center� lattice
site. Here the oscillatory structure is more complicated since
the fixed point is no longer at the minimum of the harmonic
potential so that an asymmetry in the dynamics arises. This
asymmetry can be seen by comparing the three-dimensional
phase portraits in Figs. 3 and 4. Note that the bottom panels
of both Figs. 3 and 4 also provide a direct comparison of the
governing evolution dynamics �1� with Eq. �2� and the varia-
tional approximation �5�. Remarkably good agreement is
achieved.

The final figures, Figs. 5 and 6, demonstrate the typical
behavior that occurs for an initial displacement x0 well be-
yond any of the stable fixed points. In this case, the conden-
sate simply slides over all the fixed points as it oscillates in
the harmonic trap. The phase-plane structure demonstrated in
Fig. 5 is characteristic of this parameter regime. Further-
more, the sensitive dependence of the evolution upon the

initial conditions is demonstrated, which establishes the cha-
otic nature of the system. In many respects, the resulting
chaos in the system is much like that of the forced Duffing
oscillator �31�. Figure 6 shows strong fluctuations in ampli-
tude and position, and although it does not show an excep-
tional quantitative agreement, the strong breathing behavior
is qualitatively well captured by the variational approxima-
tion. Part of the reason for this discrepancy is the sensitivity
of the evolution to the initial data �chaotic behavior�, which
makes a quantitative comparison between Eq. �1� with Eqs.
�2� and �5� difficult.

0.8

1

1.2

−0.2

0

0.2
−6

0

6

ηβ

x 0

0.8 1 1.2
−0.2

0

0.2

η

β

−6 0 6
−10

0

10

x
0

ξ

0.7

1

1.3

η

−0.3

0

0.3

β

−6

0

6

x 0

0 25 50 75 100
−6

0

6

ξ

t

FIG. 3. Phase-plane dynamics of Eqs. �5�. The top figure shows
a three-dimensional representation of the dynamics in ��, �, x0�
while the middle two panels project the dynamics onto the �-�
plane and the x0-� plane. The bottom set of figures are �, �, x0, and
� as a function of time for the governing equations �1� with Eq. �2�
�light� and variational approximation �5� �bold�. The parameter val-
ues are V0=50, V1=0.05, �=0.1, and A=1.5. The initial conditions
are �� ,� ,x0 ,��= �1,0 ,5 ,0�.
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IV. CONTROL OF THE BEC

The previous section establishes that the variational re-
duction �5� provides a useful, accurate, and greatly simplified
description of the governing BEC dynamics given by Eq. �1�
with Eq. �2�. Indeed, a great deal of analytic progress can be
made in understanding the underlying dynamics by making
simple connections with the standard theory of phase-plane
analysis. Further, the computational time associated with Eq.
�5� is orders of magnitude faster than simulations of Eq. �1�
with Eq. �2�.

The resulting theoretical insight can be used, for instance,
to provide information on controlling the BEC dynamics. In

the example illustrated in Figs. 7 and 8, the theoretical find-
ings provide both a guide to prescribing the relative strengths
of the periodic and harmonic potentials required to achieve
three stable fixed points, i.e., �2V0 /V1�1, and an estimate
for the oscillation frequency in the harmonic potential �11� in
the absence of a periodic potential. The two together can be
used to calculate a specific periodic potential, which can trap
the condensate in one of its three stable fixed points. If ini-
tially the condensate is near the fixed point to the right of the
origin, we can turn off the periodic potential, calculate the
half period of oscillation required to move the condensate to
the fixed point to the left of the origin �see Eq. �11��, and
then turn the periodic potential back on, thus trapping the
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condensate two stable fixed points away. The evolution dy-
namics in this case is demonstrated in Fig. 7. In the phase-
plane picture of Fig. 8, the flow of the solution in the reduced
variables clearly shows the transfer of the solution from one
fixed point to the other.

A wide range of other control experiments can be envi-
sioned and calculated using the simplified variational model
�5�. Indeed, not only can one perform virtual experiments
with Eq. �5� at a fraction of the computational cost of Eq. �1�
with Eq. �2�, but the analytic results of the previous section
allow for simple analytic calculations in which no simula-
tions are required. This allows for the efficient construction
and testing of experimental ideas before embarking on ex-
tensive and costly computational or experimental studies.

V. COMPARISON WITH EXPERIMENT

Lending support and validity to the variational reduction
is a direct comparison to experimental findings. Specifically,
Ketterle’s MIT group has produced a number of publicly
available movies demonstrating their experimental findings
�34,35�. We consider a specific animation, which corre-
sponds to the quasi-one-dimensional regime considered here.
In the experiment, the BEC is trapped in the defocusing re-
gime so that �=−1 in Eq. �1�. For data that remains local-
ized, the variational method remains valid in the defocusing
regime with Eq. �5b� now becoming

−50
0

50

0

10

20
0

4

x
(a)

t

|ψ
|2

−50
0

50

0

10

20
0

4

x
(b)

t

|ψ
|2

FIG. 6. Evolution of the governing equations �1� with Eq. �2�
�top� and variational approximation Eqs. �5� �bottom�. The param-
eter values are V0=50, V1=0.05, �=0.1, x0=38, �=1, and A=1.5.

−40
0

40

0

15

30
0

3

xt

|ψ
|2

FIG. 7. Evolution of the variational approximation �5� showing
the controlled placement of the BEC from one stable fixed point to
another. The parameter values assumed are V0=50, V1=0.1, �
=0.1, x0=29, �=1, and A=1.5. At time t=10, the periodic potential
is turned off so that V0=0. It is turned back on t=9.2 time units later
thus trapping the condensate near the fixed point on the other side
of the origin.

0.5

1

1.5

−0.3

0

0.3
−30

0

30

ηβ

x 0

0.5 1 1.5
−0.3

0

0.3

η

β

−40 0 40
−10

0

10

x
0

ξ

0.5

1

1.5

η

−0.3

0

0.3

β

−40

0

40

x 0

0 7 14 21 28
−10

0

10

ξ

t

FIG. 8. Phase-plane dynamics of Eqs. �5� with V0=50, V1

=0.05, �=0.1, and A=1.5. The top figure shows the dynamics in
�� ,� ,x0� while the middle panels project the dynamics onto the
�-� plane and the x0-� plane. The bottom figures are �, �, x0, and
� as a function of time. The initial conditions �� ,� ,x0 ,��
= �1,0 ,29,0� trap the condensate at the fixed point to the right of
x=0. At t=10, the periodic potential is turned off so that V0=0. It is
turned back on t=9.2 time units later thus trapping the condensate
near the fixed point to the left of x=0.

DYNAMICS OF BOSE-EINSTEIN CONDENSATES UNDER … PHYSICAL REVIEW E 75, 036214 �2007�

036214-7



d�

dt
= 2��4 − �2� +

A2	2

2
�3 − V0�2 cos � − V1. �17�

Thus there is only a sign change to the �3 term.
To characterize the experimentally measured dynamics of

the BEC, we export the experimental movie frames �36� and
take a one-dimensional slice in the x direction to capture the
spatial profile of the condensate. Further, for visualization
purposes, we then take a small segment of time for which the
condensate undergoes 7–8 oscillations in the harmonic trap.
Figure 9 compares the BEC experimental dynamics with the
variational results of Eqs. �5� with Eq. �17�. Since we have
insufficient experimental data with which to work, i.e., the
spatial scales and amplitudes are not clear in the movie, we
simply simulate Eqs. �5� with Eq. �17� to approximately fit
the experiment. The agreement is remarkably good and all
the key features of the experimental condensate, such as the
amplitude fluctuations and center-position oscillations, are
very nicely captured with the variational approximation. Fur-
ther, a comment is made by the Ketterle group �36� that the
amplitude oscillations eventually die down in time due to
natural damping in the experiment, whereas the center-
position oscillations continue. Here, the initial conditions
generate a small amount of dispersive radiation, which acts

much like a damping mechanism since there is a loss of
localized condensate. Note that the reduced system �5� does
not account for this physical mechanism. However, it is clear
from Eqs. �5� that only the amplitude-chirp dynamics depend
upon the total number of condensed atoms, which is given by

−



 ���2dx=A2	� /2. Regardless, the experimental results
confirm the analytic findings that the amplitude, width, and
chirp fluctuations are independent of, or decouple from, the
center-position and center-frequency dynamics. This con-
firms a well-known result for harmonic potentials.

VI. CONCLUDING REMARKS

The continued interest in the dynamics of Bose-Einstein
condensates has led to a sustained effort by a large number of
groups across the world to manipulate and manage the con-
densate in a variety of traps. Two of the primary traps used to
contain the condensate are of the harmonic and sinusoidal
form. In this paper, we have considered the dynamics of the
condensate in the presence of these two ubiquitous trapping
potentials, and we have shown that the condensate dynamics
can be reduced via a variational method to a set of four
coupled nonlinear differential equations. This reduced set of
equations agrees remarkably well with full numerical simu-
lations and highlights the dominant physical interactions in
the system, namely amplitude, width, chirp, center-position,
and center-frequency dynamics. Specifically, it provides
quantitatively accurate results for the condensate trapped
near local troughs in the potential, and for condensates that
exhibit both large center-position and amplitude fluctuations,
the reduced model provides qualitatively correct behavior.
Indeed, quantitative matching is not possible for this case
due to the inherently chaotic behavior of the amplitude-chirp
dynamics that resembles the forced Duffing oscillator �31�.

From a practical point of view, the reduced model pro-
vides a highly efficient method for characterizing the control
of the condensate subject to harmonic and periodic poten-
tials. It further provides simple analytic results, which pro-
vide criteria on the relative strengths of the harmonic and
periodic potentials necessary to trap the condensate in local
troughs of the periodic potential. Moreover, standard meth-
ods of phase-plane analysis determine the frequency of os-
cillation in the trap as well as the fixed-point locations, thus
providing insight into controlling and manipulating the con-
densate for macroscopic quantum applications �1–10�.
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FIG. 9. Comparison of experimental findings �top� with the
variational approximation �5� �bottom�. The quasi-one-dimensional
experiment considered can be found at Ref. �36�. A parameter fit is
used to construct the matching theoretical dynamics. Specifically,
we take V1=0.1, V0=0, �=0.1, A=1.3 with initial conditions
�� ,� ,x0 ,��= �0.5,0 ,0.4,0�. All the features of the experimental
condensate, such as the amplitude fluctuations and center-position
oscillations, are well captured with the variational method.
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